
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

08-03-2004
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

30 August 2002 - 29-Feb-04
5a. CONTRACT NUMBER

FA8655-02-M4057

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Agents Inaccessibility in Multi-Agent Systems

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

Professor Vladimir Marik

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Czech Technical University of Prague
CTU FEL
Technická 2,
Praha 6 166 27
Czech Republic

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0014 11. SPONSOR/MONITOR’S REPORT NUMBER(S)

SPC 02-4057

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report results from a contract tasking Czech Technical University of Prague as follows: The contractor will investigate the combination of
two novel approaches to address the inaccessible agent problem; (i) social knowledge and acquaintance models and (ii) a doubler agent
concept. As detailed in the technical proposal, the work will entail four primary tasks: (1) domain analysis, (2) short term inaccessibility, (3)
long term inaccessibility, and (4) testing and validation.

15. SUBJECT TERMS
EOARD, Multi Agent Systems, Behavior Based Prediction, Agent Based Systems

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
PAUL LOSIEWICZ, Ph. D.a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

19b. TELEPHONE NUMBER (Include area code)
+44 20 7514 4474

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Inaccessibility in
Multi-Agent Systems

contract number: FA8655-02-M-4057

principal investigators:

Michal Pěchouček and Vladimı́r Mař́ık

team members:

David Šǐslák, Martin Rehák, Jǐŕı Lažanský and Jan Tožička

Gerstner Laboratory,
Czech Technical University in Prague

http://gerstner.felk.cvut.cz

laboratory

Gerstner

Inaccessibility in Multi-Agent Systems
Deliverable d.3 – Final Report

Michal Pěchouček, David Šǐslák, Vladimı́r Mař́ık, Martin Rehák, Jǐŕı
Lažanský and Jan Tožička

Gerstner Laboratory, Agent Technology Group
Department of Cybernetics, Czech Technical University in Prague,
Technická 2, 166 27, Prague 6, Czech Republic

Abstract. The ”Inaccessibility in Multi-Agent Systems” project (contract no.:
FA8655-02-M-4057) has been investigating the problem of agents’ temporally or
permanent inaccessibility. Within the project the problem of agents inaccessibility
has been studied, the concept of agent’s acquaintance models and their use in the
partially inaccessible environment has been investigated, the model of the stand-
in agent has been designed and implemented and primarily the A–globe agent
interaction platform (formerly denoted as AIT - Agent Inaccessibility Testbed) has
been developed. This is the deliverable d.3, that provides technical information
about the pillar achievements of the project.

Inaccessibility in Multi-Agent Systems 3

Table of Contents

1 Introduction 4
1.1 Project Plan and Statement of the Technical Work 4

2 Inaccessibility 6
2.1 Classification of Inaccessibility 6
2.2 Measuring Inaccessibility 8

3 Sharing Social Knowledge 12
3.1 Acquaintance Model 12
3.2 Stand-in agent 13

4 Meta-Reasoning 16
4.1 MRinMAS Project 16
4.2 Integration with the Project 17

5 Experiments 18
5.1 Description of the experimental settings 18
5.2 Experimental results 21

6 A–globe Agent Integration Platform 26
6.1 Upgrade from AIT to A–globe 26
6.2 Functional Description 27
6.3 System Architecture 27
6.4 Agent Platform 28
6.5 Agent container 30
6.6 Services 41
6.7 Environment Simulator 42
6.8 Sniffer Agent 47

7 Platform comparison 48
7.1 Agent platforms characteristics 48
7.2 Message speed benchmarks 49
7.3 Memory requirements benchmark 50
7.4 A–globe Summary Statement 52

8 Conclusion 53
9 Declaration 53

Inaccessibility in Multi-Agent Systems 4

1. Introduction

The ”Inaccessibility in Multi-Agent Systems” project (contract no.:
FA8655-02-M-4057) has been investigating the problem of agents’ tem-
porally or permanent inaccessibility. Within the project the problem of
agents inaccessibility has been studied, the concept of agent’s acquain-
tance models and their use in the partially inaccessible environment has
been investigated, the model of the stand-in agent has been designed
and implemented and primarily the A–globe agent interaction plat-
form (formerly denoted as AIT - Agent Inaccessibility Testbed) has
been developed. This is the deliverable d.3, that provides technical
information about the pillar achievements of the project.

1.1. Project Plan and Statement of the Technical Work

The project has been structured into four mutually interlinked work-
packages (cited from the project proposal):

1. Domain analysis (month 1 - month 4): Firstly, the problem of
agents inaccessibility in multi-agent systems will be thoroughly
analyzed and investigated. This analysis will be carried out on
a general level, but also with respect to the domain of planning
of humanitarian relief operations, the functionality of the CPlanT
multi-agent system being considered. The Sufferterra humanitarian
relief scenario will be redesigned accordingly (in the extent needed).

2. Short term inaccessibility (month 5 - month 11): Potentials
of the classical technology of social knowledge and acquaintance
models will be studied for the agent’s short term inaccessibility.
Robust and reliable algorithms for identifying short-term malfunc-
tions of agents as well as their unavailability and techniques for
reconstructing the status of the unavailable agent will be designed.
Agent’s short term inaccessibility will be studied from the inacces-
sible agent’s point of view and also from the viewpoint of the rest
of the community.

3. Long term inaccessibility (month 8 - month 15): Limitations
of the technology developed in the WP2 for agent’s long term
inaccessibility will be studied. The core of this WP will be the
design of the formal model of the doubler agent. Applicability of
meta-reasoning, that is a subject of the AFOSR research project
running in parallel - ”Monitoring and Meta-reasoning in the Multi-
Agent Systems”, for implementing advanced reasoning capabilities
of the doubler agent will be investigated. The doubler agent will be
implemented in the form of a research prototype.

Inaccessibility in Multi-Agent Systems 5

4. Testing and validation (month 16 - month 18): Capabilities
of the developed and implemented technologies will be verified
for agents’ short-term and long-term inaccessibility in the CPlanT
multi-agent system. Testing and validation will be carried out in
a quantifiable way. Appropriate measures and criteria that will be
designed and proposed within this WP.

The project has achieved the set research goals and several ad-
ditional (non-planned) contributions have been achieved during the
project. As it is very often so in research project, we had to face several
unexpected occurrences that caused small deviation from the plan.

It has been shown that the CPlanT multi-agent system does not
support mobility and handling possible agent’s inaccessibility. For that
reason it has not been possible to re-use the CPlanT multi-agent infras-
tructure for experiments and for validation of the investigated concepts.

We have also failed to select a commercially available infrastructure
(there is none available) as a testbed for the project works. Conse-
quently, we have decided to design and develop an Agent Inaccessi-
bility Testbed (AIT). As the testbed is carefully designed to be fully
open for experimentation with different techniques and problems of
distributed computing and multi-agent systems, we have transformed
the testbed into a fully functional agent interaction platform:A–globe.
This platform is an unexpected by-product of the project.

It has turned out that studying the concepts of short-term and long-
term inaccessibility jointly is advantageous. Therefore the phases 2 and
3 has been integrated within the project. The project team working
on this project has very closely collaborated with the researchers that
worked on the research contract Monitoring and Meta-Reasoning in
Multi-Agent Systems (MRinMAS), contract number: FA8655-02-M4056.
The transfer of research results has taken place bidirectionally. The
meta-reasoning techniques have been investigated within this project
for solving agents’ inaccessibility and the A–globe platform is used
within the MRinMAS project for testing and experimenting with meta-
reasoning and monitoring.

According to the plan the set of deliverables have been shipped to
AFRL:

– month 3 – domain analysis, formal model if inaccessibility,

– month 15 – research prototype, system documentation

– month 18 – this report, the final deliverable1.
1 This report is a final deliverable and contains a unified summary of the technical

results achieved within the project. Therefore, some parts (very few) of the report
may have been already included in the previous deliverables.

Inaccessibility in Multi-Agent Systems 6

2. Inaccessibility

Agents’ inaccessibility in a multi-agent community is an uneasy prob-
lem of a high practical importance. There are several different reasons
why an agent may become inaccessible by the other members of the
multi-agent community - such as malfunction of the communication
links, communication traffic overload, agent leaving the communica-
tion infrastructure for accomplishing a specific mission, agent failing to
operate, etc. Agents do act autonomously, therefore we can speculate
and predict, we can hardly prove agents future behavioral patterns
(which is given by their autonomy). Similarly we cannot guarantee
complete reliability of the communication links and the communication
infrastructure in highly distributed systems. There are also agents who
work ’off-line’ and still wish to be acknowledged as fully fledged commu-
nity members. Consequently, there is a need for a unified and general
technology for maintaining social stability/sustainability in multi-agent
system with inaccessible agents.

Within the frame of this project we have been investigating the com-
bination of two different approaches of distributed artificial intelligence
- (i) the concept of social knowledge and acquaintance models and
(ii) the concept of various middle agents (e.g. doubler agent, stand-in
agent, matchmakers, mediators etc.) for solving this problem.

2.1. Classification of Inaccessibility

Systematically we distinguish between several classes of types of inac-
cessibility. Inaccessibility can be caused by:

1. unreliability of the communication infrastructure: periodical, singu-
lar or permanent communication lags and drop-outs,

2. balancing the cost of the communication: when an objective func-
tion is associated with sending messages (e.g. cost, time, energy
resources, etc.),

3. dynamic changes of the communication infrastructure: when plat-
forms or agents physically change their location and thus availabil-
ity with respect to different communication means,

4. partial communication infrastructure: when all nodes are not fully
interconnected,

5. semi-collaborative environment: when agents agreed to communi-
cate only a certain type of information, while other keep private
(here we talk about inaccessibility of information rather than agent),

Inaccessibility in Multi-Agent Systems 7

6. fully adversarial environment: when agents simply do not want to
communicate even if accessible.

These types of agents’ inaccessibility can occur in different possible
situations:

– agent physical mobility: Agents may physically leave the com-
munity. This can happen in the situations where intelligent agents
resides on mobile platforms such as cell phones, PDA or any other
IP-addressable devices carried e.g. by a soldier, or mobile vehicles.
For inaccessibility to happen, the communication infrastructure
needs to be incomplete due to hilly area, large distances, etc. This
scenario is based in inaccessibility type 3 and 4.

– agent code migration: Strong and weak migration of the soft-
ware code initiate inaccessibility only within communication in-
frastructures that are not completely reliable. Software agents may
need to migrate e.g. in the situations where the information needs
to be transformed between two mutually inaccessible locations
connected by route that use mobile vehicles. Such migration may
lengthen a communication link between agents, increasing its po-
tential to fail in the future.

– ad-hoc networks: Specific situations may happen when intelli-
gent agents residing on either mobile vehicle or soldiers’ equipment
need to communicate but they have only short-range broadcasting
equipment. The movement of agent carriers may be dependent or
completely independent from the agents communication require-
ments. Situations may happen when the agents’ carriers need to
physically arrange their location so that an information ’pontoon
bridge’ for a communication relay can be facilitated.

– adversarial environment: In a hostile environment the situa-
tions may occur when the agents refuse to communicate in order
to keep their existence undisclosed. Such an agent is then regarded
as inaccessible. There is a variation of this scenario, when agent
can receive the information while cannot send any information, e.g.
when broadcasting a signal may disclose agents physical location,
while receiving is a passive activity that does not reveal agent’s
position.

– unreliable communication networks: Often there are require-
ments for communication in the networks where communication
is imperfect. This is the case of complex utility networks (admin-
istered by different owners), supply chains, or information infras-

Inaccessibility in Multi-Agent Systems 8

tructures in the underdeveloped regions. Inaccessibility is here of
a types 1 and 2.

– information inaccessibility: A specific situation is when agents
agree to communicate only specific type of information (semi-
private see [12]) and keep the private information confidential.
Private information is regarded as inaccessibility. This scenario
is typical for the information fusion and intention modelling prob-
lems.

2.2. Measuring Inaccessibility

An important problem is how to quantify inaccessibility in multi-agent
systems. In the following we discuss several metrics of inaccessibility
that we have been using throughout our research project.

Let us introduce a measure of inaccessibility, a quantity denoted
as ϑ ∈< 0; 1 >. This measure is supposed to be dual to the measure
of accessibility – ϑ ∈< 0; 1 >, where ϑ + ϑ = 1. We will want ϑ to
be 1 in order to denote complete accessibility and ϑ to be 0 in order to
denote complete inaccessibility.

First, we may define this concept on a single pair of directly con-
nected agents by using two different underlying formalisms. First, di-
rect accessibility may be defined using the uptime of the link con-
necting these two agents:

ϑt =
tacc

tinacc + tacc
, (1)

where tacc denotes time of accessibility and tacc denotes time of inac-
cessibility (both discussed bellow).

Similarly, we may measure inaccessibility in a time period or as a
function of communication requests.

ϑm =
|m| − |mfail|

|m|
, (2)

where |m| denotes the total number of messages sent and |mfail| the
number of messages that failed to be delivered. In the following we will
discuss ϑt while all applies equally to ϑm. The accessibility measure ϑt

is symmetrical between entities A and B

ϑt(A,B) = ϑt(B,A), (3)

while the accessibility measure ϑm is not necessarily symmetrical.
Indirect accessibility ϑ̃ can be defined exactly in the same manner

as direct, but we consider the agent to be accessible even if there is no

Inaccessibility in Multi-Agent Systems 9

direct link between the agents and messages are forwarded by other
agents along the path between source and destination agents. Basic
properties of indirect accessibility are the same as for the direct case.

Above we presented the agent-to-agent accessibility between two
agents – ϑm(A,B). This quantity is defined as in eq. 2, where the
communication between the agents A and B are considered only.

More complicated is agent-to-community accessibility. Provided
that we want to investigate agent’s A accessibility in respect to a com-
munity θ (we suppose that A 6∈ θ), the most natural way of defining
the quantity is as an average of link accessibility between A and all
agents in θ:

ϑt(A, θ) =
1
|θ|

∑
B∈θ

ϑt(A,B), (4)

Consequently, group accessibility in a multi-agent community is de-
fined as

ϑt(θ) =
1
|θ|

∑
A∈θ

ϑt (A, θ \ {A}) . (5)

Using the probability theory, we may reason about the relation be-
tween the direct and indirect accessibility within the agent community.
It holds:

ϑ(θ) → 0 ⇒ ϑ̃(θ) → 0 (6)

This follows an intuitive conclusion that if agents are becoming less and
less directly accessible, they can not be used to route third party traffic
anymore. Such conditions, implemented in our testing scenario (see
5.1 and accessibility values in 5.2), does not allow the efficient use of
middle agents. Therefore, the concept of the stand-in agent, described
in section 3.2 was chosen for implementation and experiments.

As another motivation for the use of stand-in agents is a cost of
forwarded communications, that may use an excessive amount of lim-
ited community resources, like battery life or usable bandwidth. The
communication and social model maintenance overhead associated with
forwarding management is another incentive to using the most direct
communications possible. Therefore, we need to distinguish between
several different accessibility situations that would provide mistakenly
the same ϑ value. Let us have n agents in the community θ where
1 agent has got the agent-to-community accessibility quantity value
ϑ(A1, θ \ {A1}) = 0 and n− 1 agents have got the agent-to-community
accessibility quantity value ϑ(An, θ \ {An}) = 1. Overall ϑ(θ) would
be n−1

n . This is the same value as in the situation where all the agents
have got the same identical agent-to-community accessibility – n−1

n .

Inaccessibility in Multi-Agent Systems 10

This is why the above suggested metrics does not distinguish between
the situation where all agents are partially accessible and the situation
where there is at least an agent that is totally inaccessible.

For this reason we suggest to consider the minimal and maximal
accessibility in the community. These quantities are defined as follows:

ϑmin
t (θ) = min

A∈θ
ϑt(A, θ \ {A}), (7)

ϑmax
t (θ) = max

A∈θ
ϑt(A, θ \ {A}). (8)

In the best possible network environment the accessibility is com-
plete – ϑ = 1. This is why all the agents can freely communicate in
peer-to-peer manner. Provided that ϑ < 1 while still ϑmax = 1 we now
that there is at least one agent that can act as a facilitator and imple-
ment a communication relay. In this case we know that accessibility
is achievable. In situations, where ϑmin = 0 we know that there is at
least one isolated agent that is totally inaccessible. We can say that the
accessibility is not achievable.

The most interesting situations are outside the above listed marginal
cases, e.g. when there are two teams of agents that are mutually in-
accessible. For studying accessibility and inaccessibility in general the
techniques from the field of graph theory need to be used.

We may consider also a very specific accessibility quantity – ac-
cessibility distance – denoted as δϑ(A,B), that would describe how
long is the shortest path, or how many ’forwards’ needs to be executed
in order to convey a message between the agents A and B. Unlike
the previous measures, the accessibility distance is measured in one
particular moment. All edges between any two neighboring agents on
this path are assumed to be accessible.

In a fully accessible environment this quantity would need to be 1
for each pair of agents. However, if for a specific pair of agent we need
one middle agent (= two edges), we say that this link accessibility is 2.

We can easily see that in communities with achievable accessibility
with a possible facilitator the following is true:

if ϑmax(θ) = 1 then ∀A,B ∈ θ : δϑ(A,B) ≤ 2. (9)

The quantity 1
δϑ

captures the very important property – the differ-
ence between having a direct communication link between the agent
and a need to use one facilitator different to a situation when we need
instead of 8 middle-agents for sending a message between two nodes 9
middle-agents.

In our model, θt accessibility depends on the environment and rela-
tive agent positions only, while θm accessibility depends also on agent

Inaccessibility in Multi-Agent Systems 11

influence factors, like communication link load or social knowledge of
the agents.

Inaccessibility in Multi-Agent Systems 12

3. Sharing Social Knowledge

Social knowledge represent necessary and optional information which
an agent needs for its efficient operation in the multi-agent community.
The social knowledge is mainly used for reduction of communication,
acceleration of agents’ internal reasoning processes but also for provid-
ing self-interested agents with a competitive advantage and allowing
agents to reason one about the other in environments with partial acces-
sibility. Proceeding social knowledge replaces voluminous computation
between many agents. In principle there are two different concepts of
manipulating the social knowledge.

3.1. Acquaintance Model

The acquaintance model is a very specific knowledge structure con-
taining agent’s social knowledge. This knowledge structure is in a fact
a computational model of agents’ mutual awareness. It does not need
to be precise and up-to-date. Agents may use different methods and
techniques for maintenance and exploitation of the acquaintance model.
There have been various acquaintance models studied and developed
in the multi-agent community, eg. tri-base acquaintance model [11] and
twin-base acquaintance model [9]. The role of agents’ social knowledge
and acquaintance models in making agents’ communication efficient
has been studied in the research project ”Multi-Agent Systems in Com-
munication” supported by AFRL research contract F61775-99-WE099
and the concept of agents private and semi-private knowledge, that
are shared and mutually maintained in agents’ acquaintance models
has been studied and potentials of applications in the field of OOTW
coalition planning has been investigated in the research project ”Multi-
Agent System for Planning Humanitarian Relief Operations” supported
by AFRL research contract F61775-00-WE043.

In principle, each acquaintance model is split into two parts:

– self-knowledge – contains information about an agent itself which
shall be shared with others agents

– social-knowledge – contains knowledge about other members of
the multi-agent system or theirs self-knowledge

While the former part of the model is maintained by the social
knowledge provider, the latter is maintained by the social knowledge
requestor. The knowledge that the agents are happy to share with some
of the agents are denoted as semi-private knowledge[12]. Unlike
public knowledge, that is shared by default by all the members of

Inaccessibility in Multi-Agent Systems 13

the multi-agent community, the semi-private knowledge is shared by
a specific agreement between the agents. There is also a vital part of
agent knowledge equipment – agents private knowledge, that is not
shared with any other agent. Again, there are two possible ways how
the acquaintance model may be kept up-to-date.

– a pull model of the knowledge maintenance is often implemented
by periodical revisions when the social knowledge requestor peri-
odically queries the social knowledge provider for the updates of
the relevant information.

– a push model of the knowledge maintenance can be implemented
by e.g. subscribe-advertise protocol. The social knowledge requestor
subscribes the social knowledge provider for specific information
and the social knowledge provider reports on updates of the rele-
vant information upon changes.

Social knowledge can be used for making operation of the multi-
agent systems more efficient. The acquaintance model is an important
source of information that would have to be communicated otherwise.
Social knowledge and acquaintance models can be also used in the situ-
ations of agents’ short term inaccessibility . However, the acquaintance
models provide rather ’shallow ’ knowledge, that does not represent
a complicated dynamics of agent’s decision making, future course of
intentions, resource allocation or negotiation preferences. This type of
information is needed for inter-agent coordination in situation with
longer-term inaccessibility. We suggest introduction of the mobile ac-
quaintance model concept integrated in the stand-in agent that is
presented in the following.

3.2. Stand-in agent

An alternative option is to integrate the agent self-knowledge into a
mobile computational entity that is constructed and maintained by the
social knowledge provider. We will refer to this computational entity
as a stand-in agent. The stand-in agent shall physically reside either
on the host machine where the social knowledge requestor operates or
in the safe segment of the network with guaranteed (or at least better)
communication accessibility. The social knowledge requestor does not
create an acquaintance model of its own. Instead of communicating
with the provider, it interacts with the stand-in agent.

While usage of the classical acquaintance model is advantageous
in situations where communication traffic needs to be optimized, the

Inaccessibility in Multi-Agent Systems 14

stand-in agents are used primarily in the cases with partial communi-
cation accessibility.

The main philosophical difference between the concept of acquain-
tance model and the stand-in agent is that the stand-in agent keeps
the entire copy of agents knowledge – including agents private knowl-
edge, figure 1. This knowledge is not made available to the social
knowledge requestor. However, as the stand-in agent is not a pas-
sive knowledge structure but it has got also the reasoning capability
that allows to mirror the social knowledge provider interaction activ-
ity, the private knowledge can be used for certain patterns of high-
level negotiation. Specifically, the stand-in agent can act on the social
knowledge provider behalf, negotiate resource utilization, participate
planning agent’s commitments in the case of longer term inaccessibility.

Knowledge
Base

Reasoning
mechanism

Stand-in agent 1

Inaccessible
network

Knowledge
provider

Knowledge
Base

Knowledge
Base

Stand-in agent 2

Knowledge
requestor

Knowledge
requestor

Knowledge
requestor

Create and
Update stand-in

Query

Response

Changes
back propagation

Figure 1. The concept of the stand-in agent

The stand-in agent can obviously negotiate and interact with several
social knowledge requestors running on a single host or safe segment
of the network. At the same time, there may be more stand-in agents
representing a single social knowledge provider at different hosts or
different regions of accessibility.

As a part of complex negotiation, the stand-in agent can change
its self-knowledge base. These changes need to be propagated back to
the self-knowledge base of the inaccessible agent. Difficulties arise in
the situations when several different stand-in agents over-commit the
resources of the inaccessible agent. The process of synchronization and
commitments renegotiation needs to implemented in such situations.

The stand-in agent can be created permanently or temporally. Per-
manent stand-in is used by more clients at the same time and can also
migrate inside the multi-agent system. Disposable stand-in is used only

Inaccessibility in Multi-Agent Systems 15

for single transaction and is removed after completing the transaction.
Depending on situation, the parent agent can have several stand-in
agents simultaneously.

Stand-in agents can be used for: minimizing impact of network
failure by creation of the stand-in agent at the client agent location,
decreasing load of the parent agent and network link between parent
and client agent.

Inaccessibility in Multi-Agent Systems 16

4. Meta-Reasoning

An active and cooperative sharing of the social knowledge either within
agents acquaintance models or by means of the stand-in agents is not
always appropriate. There are certain aspects of agents social knowl-
edge that cannot be simply shared, but in needs to be constructed and
maintained by the knowledge owner. Instances of such information are
pieces of knowledge that the agents, who provide the social knowledge,
do not want to disclose, e.g. disclosure of intent, information about
resources, etc. This situation may arise in the non-collaborative multi-
agent systemss with agents that are trusted to various extends. In the
collaborative multi-agent systemss the social knowledge can experience
the ’aging process’ and can become very soon outdated if the agents
are inaccessible for a longer period of time.

4.1. MRinMAS Project

In either of the situations the agents need to be able to reason about
the inaccessible agents. We refer to reasoning about the other agents’
knowledge, mental states, resources and reasoning process as meta-
reasoning. The concept of meta-reasoning has been thoroughly stud-
ied in research project supported by AFRL, contract Monitoring and
Meta-Reasoning in Multi-Agent Systems (MRinMAS), contract num-
ber: FA8655-02-M4056.

The process of meta-reasoning in multi-agent systemss relies heavily
on dividing the multi-agent community into the set of object (ordi-
nary) agents and meta-agents. The meta-agent is an independent agent
who carries out higher level reasoning process based on observing the
community behavior [15] [14].

Within the MRinMAS project the abstract architecture of meta-
reasoning has been designed (in terms of the model and the reason-
ing processes) and three separate meta-reasoning methods has been
investigated:

– automated theorem proving: The classical theorem proving
techniques based on the resolution principle has been studied. This
instance of meta-reasoning is a classical deductive reasoning when
all the true fact that the meta-agent assumes to be true logically
follows from the set of the observation.

– machine learning: Version space, a classical machine learning
techniques has been investigated. Version space works with the
generalizations of the observed events and thus it is a clear example
of inductive reasoning.

Inaccessibility in Multi-Agent Systems 17

– inductive logic programming: A modern machine learning method
that constructs a logical program that describes even small num-
ber of events. This approach is not very suitable for incremental
meta-reasoning.

For specific description of the MRinMAS project results see [13].

4.2. Integration with the Project

The concept of meta-reasoning have not been directly integrated in the
A–globe platform until now for two reasons. The projects were rather
short and run in parallel. It was not possible to integrate the software
prototype from the MRinMAS project in a timely fashion. An important
development period of this project has been devoted to implementation
of the A–globe platform.

Currently, we work on the scenario of integrating simple meta-agent
in A–globe system. Their role will be to analyze and balance the com-
munication load between the mobile vehicles while trying to keep the
confidentiality of the agents’ information rather high. This is possible
by trying to keep agents who are sharing semi-private information on
one vehicle – container in A–globe .

Inaccessibility in Multi-Agent Systems 18

5. Experiments

5.1. Description of the experimental settings

Planning of logistic distribution of humanitarian resource is used for
experiments with inaccessibility in MAS (inspired by SufferTerra sce-
nario for humanitarian relief operation). The agents in the scenario are
individuals that work together in order to achieve shared goal. Shared
goal is to satisfy the requests for the delivery of commodities as soon
as possible. There are three main actors:

– Village – a place where humanitarian resources are needed.

– Port – a place to which goods are coming from outside. Resources
are distributed from here. It acts as aid distribution hub and can
also host village stand-in agents.

– Truck – a vehicle capable of transporting resources and informa-
tion. Each vehicle has limited load (units capacity). It can also
host village stand-in agents.

Figure 2. Agents’ world scenario

Communication between actors has limited range. Communication
is reliable (with no lags or dropouts) among the agents residing on
one agent container, while communication across the agent containers
is implemented by means of the short range radio links (for example

Inaccessibility in Multi-Agent Systems 19

IEEE802.11 [6]). Therefore each agent container can communicate only
with containers located within its radio range.

Specific experiment scenario is shown on figure 2. There are five
villages, six ports and six trucks. Positions of villages and ports in the
agents’ world are chosen in such a way that no village can directly
communicate with any port. They can communicate only by sending
information over trucks. A truck can communicate with villages, ports
and other trucks only if they are within the reach of the simulated
radio link. Trucks can move on fixed routes which are predefined in
configuration files. Routes of trucks for the first two scenarios, described
in sections 5.1.1 and 5.1.2, are presented in the table I. There is at least
one truck going from each village where some resource is needed to some
port where this resource is distributed from. In other words there is no
need for some middle storehouse to transfer the commodities through,
but under special occasions the resource can be delivered into target
village through others villages or ports.

Table I. Fixed routes of trucks for the first two scenarios

Truck Route

Black Port A, Village B, Village D, Village B, Port A

Brown Port C, Village B, Village C, Village B, Port C

Green Port E, Village B, Village A, Village B, Port E

Orange Port B, Village E, Village D, Village E, Port B

Pink Port D, Village E, Village C, Village E, Port D

Yellow Port F, Village E, Village D, Village E, Port F

Routes of trucks for transloading scenario, described in section 5.1.3,
are shown in the table II. Please note that the resources for villages A,
C and D must be transported through villages B or E.

5.1.1. Scenario without village stand-ins
The trucks follow their routes. When some truck arrives into the village,
it takes all actual requests of this village. When a truck gets into the
port, it searches if there is some resource needed by some visited village
and then it tries to load this resource. Resources matching the oldest
requests are loaded first. Truck can carry several types of resources for
different villages until its capacity is filled. Each loaded item has its
own destination where it will be unloaded.

Inaccessibility in Multi-Agent Systems 20

Table II. Fixed routes of transports for transloading scenario

Transport Route

Black Port A, Village B, Port E, Village B, Port A

Brown Port C, Village B, Port C

Green Village B, Village A, Village C, Village E, Village C,
Village A, Village B

Orange Port B, Village E, Port B

Pink Port D, Village E, Port F, Village E, Port D

Yellow Village E, Village D, Village B, Village D, Village E

5.1.2. Scenario with village stand-ins
In this scenario there are village stand-in agents in addition to vil-
lages, ports and trucks. Village stand-in agent represents interests of
its mother village in a location where the village isn’t accessible. These
stand-ins can live on trucks or ports. When truck arrives into a village,
the village scans if there is its stand-in agent on this truck. If stand-in
doesn’t exists, the village deploys it there and updates its knowledge. If
it exists, the village only sends an update with its current knowledge,
containing its current needs. In the same way the stand-ins are deployed
in ports and receive updates from the stand-in on the truck container.

In a stabilized situation, when all stand-in agents were already cre-
ated, the number of stand-ins on each transport equals the number of
villages this transport has visited. Each port visited by any transport
has at least same number of stand-ins as this transport.

These stand-ins reserve resources needed by its village before trans-
port arrives into port. An arbitrary truck can’t take the resource if it
is reserved by other stand-in agent than this truck is hosting. Priority
for reservation reflects the duration of request. The oldest requests are
satisfied first.

Knowledge of stand-in agent is updated every time it meets mother
village or any more recent stand-in of its mother village. All stand-ins
of one village don’t have exactly same information as its mother village
at one moment. It is caused by impossibility of direct communication
between all stand-ins and their mother village.

It is possible that there are delivered more resources than needed to
the village. This oversupply can be loaded on a truck and redistributed
to other villages, but this is not the goal in this scenario.

Inaccessibility in Multi-Agent Systems 21

5.1.3. Transloading scenario with storehouses
In this case the village request list consists of two parts. The first part
represents requests created by this village and the second part stores
requests of other villages represented by stand-in agents. Each request
record has destination part so it can be uniquely identified in the whole
simulation world. There is a mechanism for removing already fulfilled
requests so that request cannot multiply in the cycle. In other words,
requests of other villages become requests of this village to other actors
in the scenario.

In this scenario, resources can be distributed directly from the ports
to the villages by one truck or transloaded through one or more other
villages by other trucks. There are also village stand-in agents with
functionality as described above in paragraph 5.1.2 in this scenario.
Furthermore, the village stand-in agent can be also deployed to other
villages by the stand-in agent who lives on the truck. Knowledge base
of these stand-ins is updated every time when some transport with the
stand-in of the same village arrives.

5.2. Experimental results

First we present measurement of accessibility in the two routes con-
figuration in the scenarios. The table III shows accessibility matrix
in the route configuration of the scenario without and with stand-in
agents, sections 5.1.1 and 5.1.2. The direct accessibility between
every two agent containers in the scenario, section 2.2, is measured in
a time period by equation (1). There is calculated agent container-
to-community accessibility within a community which contains all
agent containers except the one for which this accessibility is calculated.
In the right-bottom corner in the table there is group accessibility in
a multi-agent community (equation 5). The table IV shows acces-
sibility matrix in the route configuration of the third scenario, section
5.1.3.

Both group accessibilities in whole community are very close to zero.
It means that we have tested the concept of stand-in agents in the
highly inaccessible environment.

Five experiments with water distribution problem were done in all
three scenarios. There were 49 requests generated automatically in
each village from randomly pre-generated files. These requests were
generated exactly in the same time of each experiment and scenario.
Comparative criteria is average resource delivery time. Resource de-
livery time is the time measured from request creation to its complete
fulfilment. Average delivery time for all scenarios is in the table V. More
transparent representation of these results in the form of bar charts is

Inaccessibility in Multi-Agent Systems 22

depicted in the figure 3. All these results were measured on the same
computer repetitively.

Delivery time

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

1 2 3 4 5

Experiment number

T
o

ta
l

A
v
g

.
d

e
li

v
e
ry

ti
m

e
[s

]

without stand-ins with stand-ins transloading scenario

Figure 3. Average delivery time

The average delivery time in the scenario without stand-in agents
is longer from 28 to 43 percent than in the scenario with stand-ins.
These two scenario experiments were on the same map configuration
described in paragraph 5.1.

The average delivery time in the scenario without the stand-in agents
is longer from 100 to 127 percent than in this scenario. The map
of the scenario is the same as in the previous experiments and the
transport routes are bit different. The routes are reconfigured so that
transshipping is needed, but number and speed of transports are same.

From the experiments we may identify several facts justify usefulness
of the concept of stand-in agents in this scenario:

– geographical arrangements – usefulness of the stand-in agents
depends on the position of the villages and ports. It also widely
depends on the routes of the transports, their configuration and
the amount. Even more specifically, the problem is very sensitive
to changes of the amount and location of villages and ports with
more than one route passing through them.

– requests and resources delivery – usefulness of stand-in agents
grows when amount of resource delivery in ports is comparable or
smaller than amount of resource requests in villages.

Inaccessibility in Multi-Agent Systems 23

Table III. Time accessibility matrix in the route configuration of the first
two scenarios

Villa
geA

Villa
geB

Villa
geC

Villa
geD

Villa
geE

PortA

PortB

PortC

PortD

PortE

PortF

Black

Brown

Green

Orange

Pink

Yello
w

V
ill

a
g
e

A
1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

4
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
9

V
ill

a
g
e

B
0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,3

6
2

0
,3

6
3

0
,2

8
1

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

6
3

V
ill

a
g
e

C
0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

8
9

0
,0

0
0

0
,0

0
0

0
,1

7
2

0
,0

0
0

0
,0

2
3

V
ill

a
g
e

D
0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

5
9

0
,0

0
0

0
,0

0
0

0
,1

4
8

0
,0

0
0

0
,1

8
5

0
,0

3
1

V
ill

a
g
e

E
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,3

1
9

0
,3

9
7

0
,3

8
1

0
,0

6
9

P
o
rt

A
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

6
4

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

1
0

P
o
rt

B
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

5
4

0
,0

0
0

0
,0

0
0

0
,0

1
0

P
o
rt

C
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,2

0
9

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

1
3

P
o
rt

D
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

8
9

0
,0

0
0

0
,0

1
2

P
o
rt

E
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

5
6

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

1
0

P
o
rt

F
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

9
0

0
,0

1
2

B
la

c
k

0
,0

0
0

0
,3

6
2

0
,0

0
0

0
,1

5
9

0
,0

0
0

0
,1

6
4

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,1

3
8

0
,1

1
5

0
,0

2
1

0
,0

0
0

0
,0

2
6

0
,0

6
2

B
ro

w
n

0
,0

0
0

0
,3

6
3

0
,1

8
9

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,2

0
9

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

3
8

1
,0

0
0

0
,1

2
7

0
,0

0
0

0
,0

1
6

0
,0

0
0

0
,0

6
5

G
re

e
n

0
,1

4
0

0
,2

8
1

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

5
6

0
,0

0
0

0
,1

1
5

0
,1

2
7

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

5
1

O
ra

n
g
e

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

4
8

0
,3

1
9

0
,0

0
0

0
,1

5
4

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

2
1

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,2

3
5

0
,1

6
6

0
,0

6
5

P
in

k
0
,0

0
0

0
,0

0
0

0
,1

7
2

0
,0

0
0

0
,3

9
7

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

8
9

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

1
6

0
,0

0
0

0
,2

3
5

1
,0

0
0

0
,1

1
1

0
,0

7
0

Y
e
llo

w
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

8
5

0
,3

8
1

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

9
0

0
,0

2
6

0
,0

0
0

0
,0

0
0

0
,1

6
6

0
,1

1
1

1
,0

0
0

0
,0

6
6

0
,0

0
9

0
,0

6
3

0
,0

2
3

0
,0

3
1

0
,0

6
9

0
,0

1
0

0
,0

1
0

0
,0

1
3

0
,0

1
2

0
,0

1
0

0
,0

1
2

0
,0

6
2

0
,0

6
5

0
,0

5
1

0
,0

6
5

0
,0

7
0

0
,0

6
6

0
,0

3
8

�
�

B
A

t
,

�
�

�
�

,
A

t
�

�
�

�
,

A
t

�

Inaccessibility in Multi-Agent Systems 24

Table IV. Time accessibility matrix in the route configuration of the third
scenario

Villa
geA

Villa
geB

Villa
geC

Villa
geD

Villa
geE

PortA

PortB

PortC

PortD

PortE

PortF

Black

Brown

Green

Orange

Pink

Yello
w

V
ill

a
g
e

A
1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,2

5
6

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

1
6

V
ill

a
g
e

B
0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,2

6
7

0
,3

4
2

0
,1

2
9

0
,0

0
0

0
,0

0
0

0
,2

7
3

0
,0

6
3

V
ill

a
g
e

C
0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,2

5
6

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

1
6

V
ill

a
g
e

D
0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,3

8
7

0
,0

2
4

V
ill

a
g
e

E
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

5
8

0
,2

6
6

0
,3

5
0

0
,1

9
4

0
,0

6
1

P
o
rt

A
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

4
4

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
9

P
o
rt

B
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,2

4
0

0
,0

0
0

0
,0

0
0

0
,0

1
5

P
o
rt

C
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,3

6
3

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

2
3

P
o
rt

D
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

8
3

0
,0

0
0

0
,0

1
1

P
o
rt

E
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,1

4
6

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
9

P
o
rt

F
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

1
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

7
4

0
,0

0
0

0
,0

1
1

B
la

c
k

0
,0

0
0

0
,2

6
7

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

4
4

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

4
6

0
,0

0
0

1
,0

0
0

0
,1

8
5

0
,0

6
4

0
,0

0
0

0
,0

0
0

0
,0

4
3

0
,0

5
3

B
ro

w
n

0
,0

0
0

0
,3

4
2

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,3

6
3

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

8
5

1
,0

0
0

0
,0

3
8

0
,0

0
0

0
,0

0
0

0
,0

5
1

0
,0

6
1

G
re

e
n

0
,2

5
6

0
,1

2
9

0
,2

5
6

0
,0

0
0

0
,1

5
8

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

6
4

0
,0

3
8

1
,0

0
0

0
,0

9
0

0
,0

7
3

0
,0

4
6

0
,0

6
9

O
ra

n
g
e

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,2

6
6

0
,0

0
0

0
,2

4
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

9
0

1
,0

0
0

0
,2

0
6

0
,0

3
7

0
,0

5
3

P
in

k
0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,3

5
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,1

8
3

0
,0

0
0

0
,1

7
4

0
,0

0
0

0
,0

0
0

0
,0

7
3

0
,2

0
6

1
,0

0
0

0
,0

3
4

0
,0

6
4

Y
e
llo

w
0
,0

0
0

0
,2

7
3

0
,0

0
0

0
,3

8
7

0
,1

9
4

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

0
0

0
,0

4
3

0
,0

5
1

0
,0

4
6

0
,0

3
7

0
,0

3
4

1
,0

0
0

0
,0

6
7

0
,0

1
6

0
,0

6
3

0
,0

1
6

0
,0

2
4

0
,0

6
1

0
,0

0
9

0
,0

1
5

0
,0

6
3

0
,0

1
1

0
,0

0
9

0
,0

1
1

0
,0

5
3

0
,0

6
1

0
,0

6
9

0
,0

5
3

0
,0

6
4

0
,0

6
7

0
,0

3
7

�
�

B
A

t
,

�
�

�
�

,
A

t
�

�
�

�
,

A
t

�

Inaccessibility in Multi-Agent Systems 25

Table V. Average resource delivery time

Average delivery time [s]

without stand-in agents with stand-in agents transloading scenario

Experiment number 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Village A 57,3 56,7 56,9 59,0 57,1 48,8 48,6 52,3 47,5 48,4 26,4 34,1 30,5 32,2 32,2

Village B 29,4 28,2 29,5 28,8 29,2 19,9 19,1 18,0 21,2 19,5 3,8 3,5 3,4 2,9 2,8

Village C 57,3 50,1 55,2 56,2 58,0 41,1 38,6 42,1 33,4 37,1 40,8 44,7 42,4 43,7 45,0

Village D 37,5 35,2 33,6 36,9 35,6 24,2 22,5 22,6 25,4 25,3 19,9 13,6 14,8 16,9 14,5

Village E 27,6 26,9 23,9 25,6 24,6 18,5 21,0 19,4 18,6 20,8 3,3 3,7 3,9 3,8 2,9

Total Avg. Delivery Time 41,8 39,4 39,8 41,3 40,9 30,5 30,0 30,9 29,2 30,2 18,8 19,9 19,0 19,9 19,5

Inaccessibility in Multi-Agent Systems 26

6. A–globe Agent Integration Platform

This chapter explains the implementation details of A–globe. System
is implemented in Java programming environment, because it is stan-
dard for Multi-Agent Systems programming and system can run on
many various operating systems. The whole implementation, including
experiments sources and some test agents, consists of approximately
600 classes and it is out of scope of this text to provide detailed
description of platform operation. Therefore only a brief overview is
given with some particulary interesting issues described in more detail.
The complete source code with documentation is available on attached
CD. Java documentation can be found in Sun’s Java Tutorial [17],
additional information in Java Forums [8]. The Java version 1.4 or
higher is required to run A–globe.

6.1. Upgrade from AIT to A–globe

An Agent Inaccessibility Testbed (AIT) has been transformed into a
fully functional agent interaction platform called A–globe. Parts of
the A–globe systems description are identical to AIT description pre-
sented already in deliverable d.1 and/or d.2. For the sake of complete-
ness we have decided to provide the whole description here. A–globe
differs from AIT in many ways:

– System architecture structure – there is new system entity:
agent container. The agent container is designed from the AIT
platform packages. All static methods and variables from old plat-
form classes have been removed to allow running several agent
containers in one Java Virtual Machine. (Only one old platform
can run in one JVM.) New platform provides functions for running
one or more agent containers. For more details see section 6.3. This
new architecture helps A–globe to be as lightweight as possible
to save system resources (memory, processor time, etc.).

– Message transport layer – the message transport layer were
optimized for speed up messages transmission. All outgoing mes-
sages can be byte or XML encoded. Byte decoder is much faster
than more interoperable XML decoder.

– Environment Simulator – there are two gis services: master
and client. These services bind agent containers together into
one system with central ES agent which simulates environment
(controls position and accessibility) of an agent containers. En-
vironment Simulator is designed as an ordinary agent which is

Inaccessibility in Multi-Agent Systems 27

connected to the gis/master service. It is easy to create new
Environment Simulator Agent using gis services.

– Sniffer Agent – it is on-line tool for monitoring messages and
their transmission status in the distributed multi-agent system. It
allows investigate all messages from whole system at the one place.
It is mainly used during development, debugging and integration
phase.

6.2. Functional Description

A–globe is an agent interaction platform. It was designed for test-
ing experimental scenarios featuring position and inaccessibility. But
A–globe can be used as a simple platform without these extended
functions. The platform provides functions for the residing agents, such
as communication infrastructure, store, directory services, migration
function, deploy service, etc. It is very fast and relatively lightweight.
Comparison to the others agent platforms can be found in section 7.

If A–globe is started in extended version with gis services and
Environment Simulator agent, it is most suitable for experimental sce-
narios including both static (e.g. towns, ports, etc.) and mobile units
(e.g. vehicles). Such scenario is defined by a set of actors represented
by agents residing in the agent containers. The ES agent simulates
dynamics (physical location, movement in time and others prameters)
of each agent container connected together by gis services. The ES
agent can also controls accessibility among all agent containers. The
client side of gis services applies accessibility restriction in the message
transport layer of the agent container.

6.3. System Architecture

The A–globe schema design is shown in figure 4, it consists of several
components:

– platform – provides basic functions for running one or more agent
containers, such as container manager, library manager (section
6.4);

– agent container – skeleton entity of A–globe, provides basic
functions, communication infrastructure and storage for agents
(section 6.5);

– services – provides some common functions for all agents in one
container (section 6.6);

Inaccessibility in Multi-Agent Systems 28

– environment simulator (ES) agent – simulates real world en-
vironment and controls visibility between others agent platforms
(section 6.7);

– scenario agents – represents actors in the scenario.

Container

GISServer

master

GIS master

service

ES

Agent

. . .
Subscribe-Advertise protocol for visibility updates

Container

slave

Name2

GIS client

service

A
g

e
n
t

A
g

e
n
t

...

Container

slave

Name1

GIS client

service

A
g

e
n
t

A
g

e
n
t

...

Container

slave

Name3

GIS client

service

A
g

e
n
t

A
g

e
n
t

...

Platform 1 Platform 2

JVM JVM

Figure 4. System Architecture Structure

Security: Security issues are not explicitly addressed in the plat-
form design. This has two reasons. Firstly, the platform is meant for
experiments with inaccessibility and these experiments currently put
no requirements on security. Secondly, certain level of security could
be provided by the underlying network level. However, if any security
requirements arise later, the platform can be extended.

All the platform components described later have a main class with
corresponding name, but the whole component functionality is usu-
ally provided by a set of classes. The italic font (Agent Manager) is
used when referring to the whole component, while typewriter font
(AgentManager) refers to the class.

6.4. Agent Platform

The main design goals were to create the platform as lightweight as
possible and to make the platform easily portable to another machine.
The platform is implemented as an application running on Java Virtual
Machine (JVM). Several platforms can run simultaneously (maximum
1000), each in its own JVM instance. When new agent container is
started, it can be specified in which platform container will be created
and running (see table VII).

The platform has two components:

– Container manager. The Container Manager takes care of start-
ing, execution and finishing agent containers.

Inaccessibility in Multi-Agent Systems 29

– Library Manager. The Library Manager obtains libraries re-
quired by agents and services and maintains them. The Library
Manager is also responsible for moving libraries of any migrating
agent to other platforms where required libraries are not found.

In the one agent platform can run one or more agent containers.
Containers are mutually independent except for shared common library
manager. Usage of one agent platform for all containers running on
one computer machine is beneficial because it rapidly decrease system
resources requirements (use of single JVM), e.g. memory, processor
time, etc.

The library manager is part of agent platform because all classes
inside one Sun’s Java Virtual Machine use same class loader. The Agent
Platform is also responsible for starting new container in the existing
platform with the same number. New platform is started if there is
request for starting agent container on agent platform which does not
exists yet. If there isn’t any container in a platform, the platform
is automatically shut down. The Agent Container is started through
the main class of agent platform ait.platform.Platform. Starting
arguments are described in the section 6.5.

6.4.1. Library Manager
The Library Manager takes care of the libraries installed in the plat-
form and monitors which agents/services use which library. Descriptor
of each agent and service specifies which libraries the agent/service
requires. Whenever an agent migrates or agent/service is deployed, the
Library Manager checks which libraries are missing on the platform and
obtains them from the source platform. The inter-platform functional-
ity of Library Manager is realized though the service library/loader
(this service is present on every agent container and consists of two
classes LibrarySender and LibraryRequester). The UML library de-
ployment sequence diagram is shown on figure 5.

The Library Manager provides ClassLoader which allows the JVM
to load classes from platform registered libraries. AgentManager and
ServiceManager both use this ClassLoader when creating agent/ser-
vice objects. And the MessageTransport uses this when unmarshaling
message content.

The user can add, remove and inspect libraries using the GUI. The
GUI library information is shown on figure 6. Each library in the
platform is described by the library descriptor (TheLibrary), whose
structure is shown in table VI.

Inaccessibility in Multi-Agent Systems 30

Destination Container
Source

Container

Figure 5. Library Deployment Sequence Diagram

Figure 6. GUI: Library Information

6.5. Agent container

The agents are not stand-alone applications but objects inside the agent
containers. Each agent is executed in a separate thread. The schema
of general agent container structure is shown on figure 7. Most of
the higher level container functionality (agent deployment, migration,
directory, etc.) is provided as standard container services (see 6.6).

The agent container components are:

– Container Core. The Container Core starts and shuts down all
container components.

Inaccessibility in Multi-Agent Systems 31

Table VI. TheLibrary Fields

Field Name Car. Comment

Name 1 Library name (something.jar)

Version 1 or 1 Library version

Comment 0 or 1 The service description

Data 0 or 1 Base64 encoded .jar file

Container Core Service ManagerAgent Manager

Message Transport

Agents Services

Store

Figure 7. The Agent Container Structure

– Store. The Store provides persistent data storage facility. It is
used by all container components, agents and services.

– Message Transport. The Message Transport is responsible for
sending and receiving messages from and to the container.

– Agent Manager. The Agent Manager takes care of creation,
execution and removal of agents.

– Service Manager. The Service Manager takes care of starting
and stopping the services and their interfacing to other container
components.

The agent container is started through main platform class ait.plat-
form.Platform. The Agent Platform is responsible for starting or at-
taching new containers, see section 6.4. There are several starting ar-
guments described in the table VII.

There is one mandatory starting argument container name. The
container name must be unique inside one system build from several
containers. This name is also used for determination specific store
subdirectory for the agent container and registering to Environment
Simulator Agent. When port number isn’t provided, the agent con-
tainer automatically selects first free port in the system. The store
root directory needs to point into directory where this process has read
and write privileges. If neither master nor slave argument isn’t used,

Inaccessibility in Multi-Agent Systems 32

Table VII. Agent Platform starting arguments

Attribute Mandatory Description

-name name Yes Set the ’name’ as container name

-port nnnn No Container will listen on port nnnn

-platform nnn No Create in or attach new container
to platform nnn (0-999)

-gui No Show container GUI after starting

-root dir No Select other store root directory
than default

-p name=value 0 or more Set special parameter ’name’ to
’value’

-master No Start as gis master container; Can-
not be used with parameter slave

-slave No Start as gis slave container; Cannot
be used with parameter master

-masterAddress ait://host:port No Use this address for registering in
the master container

-XMLmessages No All messages will be encoded into
XML

the agent container is started as stand-alone environment for running
agents. These two arguments are used if Environment Simulator or
other position functions is needed, see figure 4. If both arguments
master and slave are used at once, the master has priority. The Master
Address of master container is supposed to be in special addressing
format and is used only when container is started in slave mode. If
master address isn’t provided, the agent container automatically tries
to find master container in the local network. If master container isn’t
found, default address: ait://127.0.0.1:1024 is used.

6.5.1. Container GUI
The agent container has a graphic user interface (GUI), which gives
the user an easy way to inspect container state and to install or remove
its components. The GUI could be shown or hidden both locally and
remotely (by message). The GUI screen shot is shown in figure 8.

The platform window has two parts. The tree on the left side shows
names of agents, services and libraries present on the container. The
right side shows detailed information about the object selected in the
tree. Besides displaying this information, the GUI lets the user to install
and remove agents, services and libraries.

Inaccessibility in Multi-Agent Systems 33

Figure 8. Container GUI: Agent Information

Moreover, the agents and services are allowed to create their own
GUI without any restrictions. This increases an impact of agent failure
to the rest of the agent container, but highly improves the usability.

6.5.2. Message Transport
The Message Transport is responsible for sending and receiving mes-
sages. Shared TCP/IP connection for message sending is created be-
tween every two platforms when the first message is exchanged between
them. The message flow inside the platform is shown on figure 9.

The message structure respects FIPA-ACL [3]. Message fields are
shown in table VIII. The message are encoded in eXtensible Markup
Language (XML, [2]) or byte encoded depending on occurrence of con-
tainer starting attribute XMLmessages (section 6.5). The structure of
each XML document is described by Document Type Definition (DTD,
[1]) file. For coding (marshaling) and decoding (unmarshaling) XML
documents the Java APIs for XML Binding (JAXB, [7]) package is
used. The JAXB2 is a useful tool which is able to automatically generate
Java classes from DTD file and binding script. Such generated classes
have ability to marshal and unmarshal themselves and provide access
methods to their fields.

2 JAXB version 1.0 Early Access was used. Currently the version 1.0 Beta is
available, which uses XML Schema instead of DTD for classes generation.

3 Car. = Cardinality; number of occurrences of the element.

Inaccessibility in Multi-Agent Systems 34

Agents Services

Agent Manager Service Manager

Container Core

Message Transport

Receiving
Thread

Incoming
Queue

Incoming
Queue

TCP/IP connections to
the other containers

Figure 9. Message Flow

The Content of the message is transformed into XML in two ways: if
the Content object is marshalable, its marshal method is used, other-
wise its toString method is used. And vice versa, during the message
unmarshal process, an attempt to unmarshal the Content into an ob-
ject of type specified by Ontology is made. When the attempt fails, the
Content is treated as String. This method allows the agents/services
to easily pass marshalable object through messages.

For transport, all binary data are Base64 encoded using open source
Base64 coding and decoding routines by Robert Harder [10].

Class ait.platform.agent.Agent provides two methods for send-
ing and receiving messages:

1 public void sendMessage(Message m);

2 protected void handleIncommingMessage(Message m);

And class ait.platform.service.Service has:

1 public void sendMessage(Message m);

2 public void incommingMessage(Message m);

If message cannot be delivered, method sendMessage throws exception
InvisiblePlatformException.

Inaccessibility in Multi-Agent Systems 35

Table VIII. Message Fields

Field Name Car.3 Comment

Sender 1 Sender address

Receiver 1 Receiver address

Performative 1 Message performative, see FIPA Performatives [4]

Content 0 or 1 Content (XML encoded)

Protocol 0 or 1 Conversation protocol, see FIPA Protocols [5]

Ontology 0 or 1 Content ontology

ConversationID 0 or 1 ID for message matching

InReplyTo 0 or 1 ReplyWith from preceding message

ReplyWith 0 or 1 ID to copy to InReplyTo

Reason 0 or 1 Human readable debugging info

Naming and Addressing: An address has the following syntax:

ait://platform_ip:port/[agent|service]/name.

The platform ip is the IP address of machine running the platform,
port is the TCP/IP port on which the specific agent container is lis-
tening. The agent name is globally unique and is normally generated by
platform during agent creation. The service name is unique only within
one agent container (services cannot migrate) and is specified by the
service creator. The names are case insensitive and consist of alphabetic
and numeric characters. The agents and service names can also contain
the slash ’/’ for better name structure (ex. ait://127.0.0.1:1024/service/my/service).

6.5.3. Store
The purpose of Store is to provide permanent storage through inter-
face which shields its users from the operating system filesystem. Each
entity in the agent container (agent, service, container components)
is assigned its own virtual storage, which is unaffected by the others.
Whenever an agent migrates, its store content is compressed and sent
to the new location. The storage is able to store types boolean, int,
String, serializable objects, marshalable objects4 and files. The stored
elements are identified by String name. Internally, all elements are
stored as files.

The agent container store root resides in subdirectory .platform of
the current user home directory (see table IX) if no other store root
subdirectory is specified as argument to platform at starting time. Each
agent container running on the system has its own subdirectory with

4 The marshalable objects are described in section 6.5.2 – Message Transport.

Inaccessibility in Multi-Agent Systems 36

Table IX. User Home Directories

Directory System

~ Unix, Linux

C:\Windows Windows 95/98

%HOMEPATH% Windows 2000/XP

structure shown in table X. When a container with a given name is
run for the first time, new storage is automatically created and filled
by default values.

Table X. Agent Container Store Structure

Directory Usage

container name Container store root

/agents Agent stores

/services Service stores

/libraies Libraries

/prefs Container settings

Manipulation with the store is done by using method of ait.con-
tainer
.Store class. Agent or service gets Store instance by using methods of
ait.container.AgentContainer obtained by calling agent or service
method getContainer():

1 public Store getAgentStore(String agentname);

2 public Store getServiceStore(String servicename);

Once having the right Store instance, the data can be easily stored
and retrieved by bunch of putXXX and getXXX methods. The getXXX
methods for simple types require parameter specifying default value for
the entry. Entries that are not needed any more can be deleted by us-
ing public void deleteKey(String key) method. Existence of entry
can be verified by public boolean exist(String key) method.

Inaccessibility in Multi-Agent Systems 37

6.5.4. Agent Manager
The Agent Manager takes care of agents running on the agent con-
tainer. It creates agents, re-creates them after platform restart, routes
the incoming messages to the agents, packs the agents for migration
and removes agent’s traces when it migrates out of the platform or
dies.

The user can create, kill and inspect agents using the GUI. The
agent GUI information is shown on figure 8.

Table XI. AgentInfo Fields

Field Name Car. Comment

Name 1 Globally unique name

ReadableName 1 User friendly name

Type 1 Agent type (any string)

MainClass 1 Agent’s main class

TravelHistory 0 or more Agent’s migration history

Platform 1 Agent container address

Start 0 or 1 Start time stamp

Stop 0 or 1 Stop time stamp

Param 0 or 1 Parameters to pass to agent

Name 1 Parameter name

Value 0 or 1 Parameter value

Libraries 1 Libraries required

Library 0 or more Library name

Data 0 or 1 Base64 encoded agent Store

Serialized 0 or 1 Base64 encoded serialized agent

The structure of AgentInfo (agent descriptor) is shown in table XI.
The AgentInfo is used for agent migration, deployment and describes
agents currently resident in the agent container (with some fields left
blank).

6.5.5. Agents
The agent container hosts two types of entities that are able to send
and receive messages: agents and services. While the first ones are the
reason of A–globe existence the latter ones are meant as an extension
of the container infrastructure.

The agents are autonomous entities with unique name and abil-
ity to migrate. There is a separate thread created for each agent. A
wrapper running in the thread executes the agent body. Whenever an
unhandled exception is thrown by the agent or agent body exits, the

Inaccessibility in Multi-Agent Systems 38

control is passed back to the wrapper, which handles the situation.
Therefore potential agent failures are not propagated to the rest of the
agent container. The return value of the agent main method is used
to determine agent’s termination type (die, migrate, suspend). Agents
could be deployed to remote container.

Every agent is extended from main agent class ait.container.-
agent.Agent. The class provides basic functions for an agent, such
as:

– getContainer() – returns container instance,

– getName() – returns name of the agent,

– migrate(Address destination) – start migration procedure from
agent’s will (section 6.5.5.1),

– sendMessage(Message m) – this method is used for sending mes-
sage by the agent.

If an agent wants receive messages without using conversation discrim-
ination (all incoming messages to this agent go to one method), the
agent must overload method handleIncommingMessage(Message m)
otherwise it must use conversation manager with tasks, described
in the section 6.5.5.2.

6.5.5.1. Migration Procedure
In order to successfully migrate, the agent has to support serialization.
The serialization is an instrument of the Java language to store objects
into a sequence of bytes. The object serialization process is almost
automatic, but the object has to provide a special support for some
special cases.

The migration sequence is shown on figure 10. All exceptions that
might occur during the process are properly handled and the commu-
nication is secured by timeouts. If the migration cannot be finished for
any reason, the agent is re-created in its original container.

If the done message is successfully sent by the agent destination
container but never received by the source container, two copies of the
agent emerge. If the done message is received by the source container,
but the agent creation fails at the destination container, the agent
is lost. These events can never be fully eliminated due to different
inaccessibility types (section 2.1), but maximum caution was given to
minimize their probability.

For the migration process class ait.container.agent.Agent pro-
vides a method protected void migrate(Address destination). If
some agent wants to migrate of its own will, it calls this method

Inaccessibility in Multi-Agent Systems 39

Source Container Destination Container

Figure 10. Agent Migration

with destination address. The migration process was tested and works
smoothly also between two containers hosted on different operating
systems.

6.5.5.2. Conversation Manager and Tasks
Usually, an agents deals with multiple jobs simultaneously. To sim-
plify a development of such agents, the A–globe offers tasks. A task
is a class extended from class ait.container.Task. A task is able
to send and receive messages and to interact with other tasks. The
ConversationManager takes care of every message received by the
agent to be routed to the proper task. The decision, to which Task
a message should be routed, depends on the massage ConversationID.
The ConversationID should be viewed as a ’reference number’.

If we compare an agent to an institution, then a Task would be
dedicated office worker. The institution deals with lots of agendas, but
each worker deals only with his current case. When external entities
interact with the institution, they mention the reference number in
every letter. Based on the reference number the messenger boy delivers
the letter to the appropriate worker.

Inaccessibility in Multi-Agent Systems 40

To switch on the task support, agent’s method for starting the
conversation manager startConversationManager() has to be called.
After calling this method, the message events are no more routed to
agent’s method handleIncommingMessage, but to the ConversationManager,
who forwards them to proper task’s handleIncommingMessage method.
The conversation manager can be accessed by agent’s member variable
cm. There are two ways to associate the particular task with some
ConversationID:

– When a task sends out a message using it’s sendMessage, it be-
comes associated with the message ConversationID
(the ConversationID of outgoing messages is automatically filled
in by the conversation manager).

– A task can be associated with ConversationID manually by call-
ing conversation’s manager registerTask(String convID, Task
t) method.

All messages that do not have the ConversationID associated with the
particular task are routed to so called idle task. The idle task is set by
the setIdleTask(Task t) method of conversation manager.

When a task is finished, it should deregister from the conversation
manager by calling the cancelTask() method.

To offer the tasks easy way to implement timeouts and to save sys-
tem resources, the AgentContainer class contains public final variable
TIMER (java.util.Timer).

6.5.6. Service Manager
The Service Manager takes care of services present in the agent con-
tainer. The user can start, stop and inspect the services using GUI.
The GUI service information is shown on figure 11.

There are two types of services – user services and system services.
The system services are automatically started by the container and
form a part of the container infrastructure (agent mover, library de-
ployer, directory services etc.). The system services cannot be removed.
The user services can be started by user or any agent/service. The
user services can be either permanent (started during every container
startup) or temporary (started and stopped by some agent).

The structure of ServiceInfo (service descriptor) used for service
deployment is shown in the table XII.

Inaccessibility in Multi-Agent Systems 41

Figure 11. GUI: Service Information

Table XII. ServiceInfo Fields

Field Name Car. Comment

Name 1 Platform unique name

MainClass 1 Service’s main class

Libraries 1 Libraries required

Library 0 or more Library name

Data 0 or 1 Base64 encoded service Store

Description 0 or 1 The service description

6.6. Services

The services are bound to particular container by their identifier. There
could be the same service on several containers. The services do not
have their own dedicated thread and are expected to behave reactively
on response to incoming messages and function calls. Services can be
deployed to remote container.

The agents (and services or container components) have two ways to
communicate with a service. Either via normal messages or by using the
service shell. The service shell is a special proxy object that interfaces
service functions to a client. The UML sequence diagram of service
shell creation and use is shown on figure 12.

The advantage of service shell is an easy agent migration (for mi-
gration description see section 6.5.5.1): while the service itself is not
serializable, the service shell is. When an agent migrates, the shell
serializes itself with information what service name it was connected to.
When the agent deserializes at the new location, the shell reconnects

Inaccessibility in Multi-Agent Systems 42

Client ServiceManager Service

ServiceShell

getService()

getServiceShell()

create

serviceShell

serviceShell

Service Call

performOperation()

performOperation()

result

result

Figure 12. Service Shell Operation

to its service at the new location. Before using the service the agent
should call shell’s isValid method to find out whether it is connected
to the service.

When a service is shut down, it notifies it’s shells so that they refuse
subsequent service calls.

There are several common services described in the table XIII. These
services are automatically started by the agent container and provide
common functions for all agents. Last two services gis/master and
gis/client depending on starting arguments master and slave, see
section 6.5.

6.7. Environment Simulator

The purpose of ES is to simulate the real world environment. More
specifically the ES models the platform mutual accessibility described
by equation (1) and informs each container about other platforms in-
side its communication range. Besides visibility, the ES can inform
the containers about any other parameters (eg. position, temperature,
. . .). The ES consists of two parts: the ES Agent, which generates
the information and gis services that are present at every platform

Inaccessibility in Multi-Agent Systems 43

Table XIII. System services description

Service name Description

container/command Service through which container core re-
motely receives commands (show/hide
GUI, shutdown)

container/service/directory Provides searching of service addresses
matching some search criteria

container/agent/directory Provides searching of agent addresses
matching some search criteria

platform/library/directory Provides searching of library matching
some search criteria

container/deploy Service responsible for starting an agent
from agent info record (table XI)

gis/master Master side of Environment Simulator ser-
vice

gis/client Client side of Environment Simulator ser-
vice

connected in the scenario, figure 4. Two types of the ES Agent can be
easily started from main menu of the master container GUI. Master
container is started with the attribute master.

6.7.1. Environment Simulator Agent
The Environment Simulator (ES) is implemented as an ordinary Agent.
However, the agent container hosting the ES is special, because it does
start the gis/master service only. Absence of the gis/client service
allows the container freely communicate (perfect accessibility, section
2.2) with all other containers. The structure of data sent by the server
to clients is shown in table XIV.

Table XIV. GISInfo Fields

Field Name Car. Comment

VisibleContainer 0 or more Containers in radio range

Name 1 Container name

Host 1 Container host address

Port 1 Containers communication port

Param 0 or 1 Environment parameters

Name 1 Parameter name

Value 0 or 1 Parameter value

Inaccessibility in Multi-Agent Systems 44

The ES agent architecture allows simulation of complicated platform
motion, suited exactly for experiments performed. There are two ES
agents implemented and described in next subsections.

6.7.1.1. Matrix ES Agent
The Matrix ES Agent implementation provides simple user-checkable
visibility matrix, as shown on figure 13. This implementation does not
need any other configuration. When an gis/client service subscribes
to the gis/master service, the container name is automatically added
to the matrix, creating a new column and new row. The user simply
check which containers can communicate together and which can’t.

Figure 13. Platform Visibility Matrix

6.7.1.2. Graphics ES Agent
The Graphics ES Agent is fully automatic environment simulator. It
moves mobile agent containers representing mobile units in virtual
world and automatically controls accessibility between them. The vis-
ibility is controlled by means of simulation of the short range wireless
link. Therefore each container can communicate only with containers
located inside predefined radius limit. As the containers move, con-
nections are dynamically established and lost. The Graphics ES Agent
GUI has a control window, shown on figure 14, and a visualizer win-
dow, shown on figure 2. Through the control window user can load
configuration from file, start and stop simulation or can send control
messages to platforms.

Figure 14. Control window of ES server

Inaccessibility in Multi-Agent Systems 45

Number of agent containers and other parameters are read from
main XML configuration file called default.xml. The structure of this
file is shown in table XV. And the structure of map definition file is
shown in table XVI.

Table XV. The structure of default.xml

Field Name Car. Comment

Name 1 Configuration name

Map 1 Reference to map XML definition file

Range 0 or 1 Wireless range limit

VisParam 0 or more Visualization parameters

Name 1 Parameter name

Value 1 Parameter value

Container 1 or more Client containers

Name 1 Client container name

Route 1 Reference to route XML file

Color 0 or 1 Color of the container in visualizer

Speed 0 or 1 Speed of the container

Icon 0 or 1 Reference to icon file

Table XVI. The structure of map file

Field Name Car. Comment

Location 0 or more Location in the map

Name 1 Name of location

PosX 1 X position of location on the map

PosY 1 Y position of location on the map

isCity true or false Define if the location is a city

Agent containers move on fixed routes listed in the main configura-
tion file. Each container route is stored in separate file. The structure
of this file is shown in table XVII. If LoopingType is set to loop, the
route of the container continues after last segment again from first
segment in the loop. Bounce type means that the container bounce on
the segments between first and last point. The route can contain pause
or route events. The route events are used for noticing the gis/client
that it arrives somewhere, and movement can be paused until the client
sends a command to go on.

Inaccessibility in Multi-Agent Systems 46

Table XVII. The structure of route definition file

Field Name Car. Comment

LoopingType loop or bounce Looping type of this route sequence

StartX 0 or 1 Starting X position

StartY 0 or 1 Starting Y position

StartLoc implied Or starting location name

RouteSegment 0 or more One segment of the route

Type line or curve Segment type

X 0 or 1 End point - X coordinate

Y 0 or 1 End point - Y coordinate

LocName implied Or end point location name

RouteWait 0 or more Waiting event

WaitTime 1 Waiting duration in msec

RouteEvent 0 or more Route event

PostEvent 0 or 1 Send this event to gis/client

WaitEvent 0 or 1 Wait until receive this event from gis/client

6.7.1.3. GIS services
Gis services distribute visibility information to all container message
transport layers. There are two types of gis services. One for sever side
and one for client side, as presented on figure 4.

If the container is started with the attribute master (see starting
attributes in section 6.5), the server service named gis/master is au-
tomatically started by the container core. The service starts listening
for broadcast UDP packet with auto-configuration request. The service
manages list of logged containers. The Environment Simulator Agent
doesn’t communicate directly with logged containers. It uses service
shell of the gis/master for every communication. It is therefore easy
to create a new Environment Simulator Agent with new functionality
that will be use this shell for communication with all clients.

The client service named gis/client is started by the container core
if the container is started with the attribute slave. After the container
startup, the service subscribes with the gis/master to receive the envi-
ronmental updates. The address of server container can be passed to the
container as startup attribute. Otherwise client tries to find server au-
tomatically in the local network by sending broadcast packets. If auto-
matic detection fails, the client uses localhost address with port 1024 for
connecting to the server. Any container component (agent or service)
wishing to receive the environment updates (visibility and other pa-

Inaccessibility in Multi-Agent Systems 47

rameters) can register as gis/client service listener (must implement
interface ait.gis.service.client.GISVisibilityListener).

The most important of gis/client service listeners is the Message-
Transport, which needs the update information to apply visibility
restrictions. Before receiving first update from the gis/client service,
the MessageTransport sends messages to any platform. As soon as
visible platforms list is available, the messages to platforms not present
on the list are returned as undeliverable. Therefore, if no ES Agent is
started, all platforms are connected without any restrictions.

6.8. Sniffer Agent

The Sniffer Agent is an on-line tool for monitoring all messages and
their transmission status (delivered or invisible target). This tool helps
to find and resolve communication problem in multi-agent systems
during development phase in the A–globe.

The sniffer can be started only on an agent container where gis/-
master service is running through master container gui main menu.
After sniffer start, all messages between agents and services inside any
container or among two agent containers are monitored. Messages can
be filtered by the sender or receiver of the message. All messages match-
ing the user-defined criteria are shown in the sniffer gui, as shown on
figure 15. The message transmission status is emphasized by type of
line. The color of the message correspond to the message performative.
By double clicking full message details are shown 16.

Figure 15. The sniffer GUI

Inaccessibility in Multi-Agent Systems 48

Figure 16. The message detail window

7. Platform comparison

This section presents the results of comparison of available JAVA-based
agent development frameworks (agent integration platforms) evaluated
by an independent expert Pavel Vrba from Rockwell Automation Re-
search Center Prague [16], which were carried out in a cooperation with
the Gerstner Laboratory. Authors wish to express acknowledgement to
Rockwell Automation Research Center Prague for mutually beneficial
cooperation in the platform evaluation process.

Firstly, the particular benchmark criteria, which the agent platform
should provide are identified (e.g. small memory footprint and message
sending speed). For selected agent platforms - JADE, FIPA-OS, ZEUS,
JACK, GRASSHOPPER and A–globe - the results of benchmarking
are presented with respect to message sending velocity. This property
is a crucial property in many applications.

7.1. Agent platforms characteristics

The agent development tool, often called an agent platform, provides
the user with a set of JAVA libraries for specification of user agent
classes with specific attributes and behaviors.

In many applications there are specific requirements on the proper-
ties of the agent platform:

– FIPA compliancy – compliancy with the FIPA standards is a
crucial property ensuring the interoperability. FIPA specifications
address several aspects of agent platforms, not only the inter-agent
communication that follows the Agent Communication Language.

Inaccessibility in Multi-Agent Systems 49

How the agents should be organized and managed within the agent
community is covered by the agent management specifications. The
FIPA specification of the message transport protocol (MTP) defines
how the messages should be deliverd among agents within the same
agent community and particularly between different communities.

– memory requirements – This issue is mainly interesting for
deploying agents on small devices like mobile phones or personal
digital assistants (PDAs) which can have only a few megabytes of
memory available. This issue is also important for running thou-
sands of agents on the one computer at the same time.

– message sending speed – for many applications the message
sending speed between agents is crucial parameter of the agent
platform. The agent platform runtime, carrying out interactions,
should be fast enough to ensure reasonable message delivery times.

7.2. Message speed benchmarks

The selected platforms have been put through a series of tests where the
message delivery times have been observed under different conditions.

In each test, so called average roundtrip time (avgRTT) is mea-
sured. This is the time period needed for a pair of agents (let say A
and B) to send a message from A to B and get reply from B to A.
JAVA System.currentTimeMillis() method is used for measuring
time which returns the current time as the number of milliseconds
since midnight, January 1, 1970. The roundtrip time is computed by
the agent A when a reply from B is received as a difference between
the receive time and the send time. An issue is that a millisecond preci-
sion cannot be mostly reached; the time-grain is mostly 10ms or 15ms
(depending on the hardware configuration and the operating system).
However it can easily be solved by repeating a message exchange several
times (1000 times in our testing) and computing the average from all
the trials.

As can be seen in table XVIII, three different numbers of agent
pairs have been considered: 1 agent pair (A-B) with 1000 messages ex-
changed, 10 agent pairs (A1-B1, A2-B2, . . ., A10-B10) with 100 messages
exchanged within each pair and finally 100 agent pairs (A1-B1, A2-B2,
. . ., A100-B100) with 10 messages per pair. Moreover, for each of these
configurations two different ways of executing the tests are applied.
In the serial test, the A agent from each pair sends one message to
its B counterpart and when a reply is received, the roundtrip time
for this trial is computed. It is repeated in the same manner N-times

Inaccessibility in Multi-Agent Systems 50

(N is 1000/100/10 according to number of agents) and after the N-th
roundtrip is finished, the average response time is computed from all
the trials. The parallel test differs in such a way that the A agent from
each pair sends all N messages to B at once and then waits until all
N replies from B are received. In both the cases, when all the agent
pairs are finished, from their results the total average roundtrip time
is computed.

As the agent based systems are distributed in their nature, all the
agent platforms provide the possibility to distribute agents on several
computers (hosts) as well as run agents on several agent platforms
(or parts of the same platform) within one computer. Thus for each
platform, three different configurations have been considered: (i) all
agents running on one host within one agent platform, (ii) agents run-
ning on one host but within two agent platforms (i.e. within two Java
Virtual Machines - JVM) and (iii) agents distributed on two hosts. The
distribution in last two cases was obviously done by separation of the
A-B agent pairs.

The overall benchmark results are presented in the table XVIII.
Remind that the results for serial tests are in milliseconds [ms] while
for parallel testing seconds [s] have been used. Different protocols used
by agent platforms for the inter-platform communication are also men-
tioned: Java RMI (Remote Method Invocation) for JADE and FIPA-
OS, TCP/IP for ZEUS and A–globe , UDP for JACK, and IIOP for
GRASSHOPPER.

To give some technical details, two Pentium II processor based com-
puters running 600 MHz (256 MB memory) with Windows 2000 and
Java 2 SDK v1.4.1 01 were used.

Some of the tests, especially in the case of 100 agents, were not
successfully completed mainly because of communication errors or er-
rors connected with the creation of agents. These cases (particularly
for FIPA-OS and ZEUS platforms) are marked by a special symbol.

More transparent representation of these results in the form of bar
charts is depicted in figure 17. The left hand side picture in each row
corresponds to the serial test with one agent pair while the right hand
side picture corresponds to the serial test with ten agent pairs. The
first row represents tests run on one host, the second row corresponds
to test run also on one host but within two JVMs and the third row
shows results of testing on two hosts.

7.3. Memory requirements benchmark

Approximate memory requirements per agent can be seen on figure 18.
Memory used by JAVA is computed as java.lang.Runtime.totalMemory()

Inaccessibility in Multi-Agent Systems 51

Average roundtrip time, 1 host

(1 agent pair, 1000 messages serial)

28,6

141,3

2,1 0,20.4

101,0

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

JADE FIPA-OS ZEUS GH JACK A-globe

a
v
g

R
T

T
[m

s
]

Average roundtrip time, 1 host

(10 agent pairs, 100 messages serial)

4,4

607,1

224,8

2 209,3

21,7 2,7

0,0

500,0

1 000,0

1 500,0

2 000,0

2 500,0

JADE FIPA-OS ZEUS GH JACK A-globe

a
v
g

R
T

T
[m

s
]

Average roundtrip time, 2 hosts

(10 agent pairs, 100 messages serial)

56,2

96,2

107,6

17,6 13,7

0,0

20,0

40,0

60,0

80,0

100,0

120,0

JADE FIPA-OS ZEUS JACK A-globe

a
v
g

R
T

T
[m

s
]

Average roundtrip time, 2 hosts

(1 agent pair, 1000 messages serial)

6,1
12,2

101,1

158,9

2,5 2,2

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

180,0

JADE FIPA-OS ZEUS GH JACK A-globe

a
v
g

R
T

T
[m

s
]

Average roundtrip time, 1 hosts, 2 JVM

(1 agent pair, 1000 messages serial)

8,8

20,3

101,7

3,7 2,6

0,0

20,0

40,0

60,0

80,0

100,0

120,0

JADE FIPA-OS ZEUS JACK A-globe

a
v
g

R
T

T
[m

s
]

Average roundtrip time, 1 hosts, 2 JVM

(10 agent pairs, 100 messages serial)

85,7

205,2

227,9

31,4 23,6

0,0

50,0

100,0

150,0

200,0

250,0

JADE FIPA-OS ZEUS JACK A-globe

a
v
g

R
T

T
[m

s
]

Figure 17. Serial test results: 1st row - one host, 2nd row - one host with two agent
platforms, 3rd row - two hosts. Left hand side - 1 agent pair, right hand side - 10
agent pairs

- java.lang.Runtime.freeMemory(). Average memory requirement
for one agent is obtained as difference between the memory used before
and after creation of 100 agents divided by 100.

Inaccessibility in Multi-Agent Systems 52

Memory requirements per agent

5,1

14,4

37,4

11,6

2,3 2,45

0

5

10

15

20

25

30

35

40

JADE FIPA-OS ZEUS GH JACK A-globe

m
e
m

o
ry

[K
B

]

Figure 18. Approximate memory requirements per agent.

7.4. A–globe Summary Statement

As can be seen, A–globe has the best results in all message sending
speed benchmarks (table XVIII) from all selected agent platforms. In
comparison with its main competitors, JADE and FIPA-OS, the A–
globe is at least two times faster than JADE and six times faster than
FIPA-OS. A–globe hasn’t any communication errors. Also in mem-
ory benchmark (figure 18) A–globe has one of the smallest memory
requirement per agent.

Inaccessibility in Multi-Agent Systems 53

8. Conclusion

This research project carried out under support of the The ”Inacces-
sibility in Multi-Agent Systems” project (contract no.: FA8655-02-M-
4057) has been successful and managed to accomplish the set research
targets. Besides the research targets specified in the proposal we have
managed to develop a new agent integration platform supporting agent
migration and modelling agents inaccessibility.

An important contribution of this research project have been as
follows:

– formalization of the problem of agents’ inaccessibility,

– classification of various types of agents’ inaccessibility,

– suggesting the metrics for measuring agents accessibility and agents
inaccessibility,

– design of an alternative mechanism for managing agent social knowl-
edge – the concept of the stand-in agent, and

– development of the A–globe platform for modelling agents’ mo-
bility and inaccessibility.

Usefulness of the suggested approach has been illustrated on a series
of experiments in the humanitarian aid provisioning scenario. The ex-
periments shown that the stand-in agent contribute have got a highly
improving role in the situations with high inaccessibility. The concept
of social knowledge maintenance and exploitation has been proven as
highly efficient vehicle for handling the inaccessibility problems.

The A–globe platform has been tested and compared with several
leading agent integration platforms. The results illustrated the power
of the system in terms of its lightweightness and efficiency in message
passing. In these aspects the A–globe platform outperformed such
platforms like JADE, JACK, etc. This fact has been confirmed by a
transparent evaluation carried out by an independent expert.

9. Declaration

The Contractor, Czech Technical University in Prague, hereby declares
that, to the best of its knowledge and beliefs, the technical data deliv-
ered herewith under the Contract No. FA8655-02-M-4057 is complete,
accurate, and complies with all requirements of the contract.

The Contractor certify that there were no subject inventions to
declare as defined in FAR 52.227-13, during the performance of this
contract.

Inaccessibility in Multi-Agent Systems 54

Table XVIII. Message delivery time results for selected agent platforms

serial [ms] parallel [s] serial [ms] parallel [s] serial [ms] parallel [s]

JADE v2.5 0,4 0,36 4,4 0,22 57,8 0,21

JADE v2.5

1 host, 2 JVM, RMI
8,8 4,30 85,7 4,34 1 426,5 4,82

JADE v2.5

2 hosts, RMI
6,1 3,16 56,2 3,60 939,7 3,93

FIPA-OS v2.1.0 28,6 14,30 607,1 30,52 2 533,9 19,50

FIPA-OS v2.1.0

1 host, 2 JVM, RMI
20,3 39,51 205,2 12,50 � �

FIPA-OS v2.1.0

2 hosts, RMI
12,2 5,14 96,2 5,36 � �

ZEUS v1.04 101,0 50,67 224,8 13,28 � �

ZEUS v1.04

1 host, 2 JVM, ?
101,7 51,80 227,9 � � �

ZEUS v1.04

2 hosts, TCP/IP
101,1 50,35 107,6 8,75 � �

GRASSHOPPER
v2.2.4b + FIPA addon v1.0

141,3 1,98 2 209,3 0,47 � �

GRASSHOPPER v2.2.4b

1 host, 2 JVM, ?
N/A N/A N/A N/A N/A N/A

GRASSHOPPER v2.2.4b

2 hosts, IIOP
158,9 � 605,7 � � �

JACK v3.51 2,1 1,33 21,7 1,60 221,9 1,60

JACK v3.51

1 host, 2 JVM, UDP
3,7 2,64 31,4 3,65 185,2 2,24

JACK v3.51
2 hosts, UDP

2,5 1,46 17,6 1,28 165,0 1,28

AGlobe 0,2 0,07 2,7 0,06 17,7 0,08

AGlobe
1 host, 2 JVM, TCP/IP

2,6 0,26 23,6 0,33 233,8 0,98

AGlobe
2 hosts, TCP/IP

2,2 0,35 13,7 0,39 123,3 0,40

JAVA-based Agent Development Toolkits/Platforms - Benchmark Results

Agent Platform agents: 1 pair

messages: 1.000 x�

agents: 10 pairs

messages: 100 x�

agents: 100 pairs

messages: 10 x�

Message sending - average roundtrip time (RTT)PIII, 600MHz, 256MB

�

!

!

!

January 2004, Rockwell Automation

Inaccessibility in Multi-Agent Systems 55

References

1. ‘Document Type Definition’.
http://www.w3.org/TR/2000/REC-xml-20001006.

2. ‘eXtensible Markup Language’. http://www.w3.org/XML/.
3. ‘FIPA ACL Message Structure Specification’.

http://www.fipa.org/specs/fipa00061/SC00061G.pdf.
4. ‘FIPA Communicative Act Library Specification’.

http://www.fipa.org/specs/fipa00037/SC00037J.pdf.
5. ‘FIPA Interaction Protocol Library Specification’.

http://www.fipa.org/specs/fipa00025/XC00025E.pdf.
6. ‘IEEE802.11 Specification’.

http://grouper.ieee.org/groups/802/11/index.html.
7. ‘JAVA API for XML Binding’. http://java.sun.com/xml/jaxb.
8. ‘JAVA Forums’. http://forum.java.sun.com/.
9. Cao, W., C.-G. Bian, and G. Hartvigsen: 1997, ‘Achieving Efficient Cooper-

ation in a Multi-Agent System: The Twin-Base Modelling’. In: P. Kandzia
and M. Klusch (eds.): Co-operative Information Agents, No. 1202 in LNAI.
Springer-Verlag, Heidelberg.

10. Harder, R., ‘Base64 coding and decoding, Java Source’. http://iharder.net/
xmlizable.

11. Mař́ık, V., M. Pěchouček, and O. Štěpánková: 2001, ‘Social Knowledge in
Multi-Agent Systems’. In: M. Luck et al. (eds.): Multi-Agent Systems and
Applications, No. 2086 in LNAI. Springer-Verlag, Heidelberg.

12. Pěchouček, M., M., V. Mař́ık, and J. Bárta: 2002, ‘A Knowledge-Based
Approach to Coalition Formation’. IEEE Intelligent Systems 17(3), 17–25.

13. Pěchouček, M., V. Mař́ık, J. Bárta, J. Tožička, O. Štěpánková, and M. Jákob:
2003a, ‘Monitoring and Meta-Reasoning in Multi-Agent Systems’. final report
to Air Force Research Laboratory AFRL/EORD research contract (FA8655-
02-M4056).

14. Pěchouček, M., O. Štěpánková, V. Mař́ık, and J. Bárta: 2003b, ‘Abstract Archi-
tecture for Meta-reasoning in Multi-Agent Systems’. In: P. Mař́ık, Muller (ed.):
Multi-Agent Systems and Applications III, No. 2691 in LNAI. Springer-Verlag,
Heidelberg.

15. Tožička, J., J. Bárta, and M. Pěchouček: 2003, ‘Meta-Reasoning for Agents’
Private Knowledge Detection’. In: Klusch, M., Ossowski, S.,Omicini, A.,
Laamanen, H. (Eds.) Cooperative Information Agent VII – Lecture Notes in
Computer Science, LNAI 2782. Heidelberg : Springer-Verlag.

16. Vrba, P.: 2003, ‘JAVA-Based Agent Platform Evaluation’. In: V. Mař́ık, D.
McFarlane, and P. Valckenaers (eds.): Holonic and Multi-Agent Systems for
Manufacturing, No. 2744 in LNAI. Springer-Verlag, Heidelberg.

17. Walrath, K., M. Campione, and A. Huml: 2003, The JAVA Tutorial. Sun
Microsystems, Inc. http://java.sun.com/docs/books/tutorial/index.html.

